International Conference on Monte Carlo techniques
Closing conference of thematic cycle

Paris July 5-8th 2016 
Campus les cordeliers
le_crc_cloitre_1630.jpg

Trajectorial coupling between one-dimensional diffusions with linear diffusion coefficient and their Euler scheme
Arnaud Gloter  1@  , Emmanuelle Clément  2, *@  
1 : Laboratoire de Mathématiques et Modélisation d'Évry  (LaMME)  -  Website
Université d'Evry-Val d'Essonne
2 : Le Laboratoire d'Analyse et de Mathématiques Appliquées  (LAMA)  -  Website
Université Paris Est (UPE)
* : Corresponding author

It is well known that the strong error approximation, in the space of continuous paths equipped with the supremum norm, between a diffusion process, with smooth coefficients, and its Euler approximation with step $1/n$ is $O(n^{-1/2})$ and that the weak error estimation between the marginal laws, at the terminal time $T$, is $O(n^{-1})$. In this talk, we study the $p-$Wasserstein distance between the law of the trajectory of a diffusion process, with linear diffusion coefficient, and its Euler scheme. Using the Komlós, Major and Tusnády construction, we show that this Wasserstein distance is of order $\log n /n$.

 



  • Presentation
Online user: 1 RSS Feed